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Physical Application of Finite Group

1 Crystal Symmetry

A crystalline solid is a regular array which is invariant under translation of the form,

!
T = n1

!
a 1 + n2

!
a 2 + n3

!
a 3

In addition, there are also rotations which can be carried in a unit cell of the crystal.
Space group�the complete operations of a crystal, including translation and rotations
Point group�only rotations
It turns out there are only 32 space groups which are consistent with translational invariant

1.1 Point group

1. Cn �point group with one n-fold symmetry axis only
n can only be 2; 3; 4; 6 in order to be consistent with translational invariant
Write the translation in plane perpendicular to the rotation axis the form,

!
T = n1

!
a 1 + n2

!
a 2 + n3

!
a 3

Let
!
R be the one with shortest length. Rotate this by

2�

n
to get another translation

!
R
0
which will have the

same length as
!
R: Consider the combination

!
R �

!
R
0
:
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From the �gure it is seen that ����!R �!
R
0���� = 2R sin 2�n

Since
!
R is the shortest length we require

2R sin
2�

n
� R

This implies that n � 6:

For the case n = 5; we can show that

����!R +!
R
0���� � R and is ruled out.

Possible Cn symmetries are given below;

These are all cyclic Abelian groups.

2. Cnv� In addition to Cn axis there is a vertical re�ection plane �v , re�ection in a plane passing through the
axis of highest symmetry. Solid lines indicate the vertical re�ection planes.

3. Cnh�There is a horizontal re�ection plane ? to Cn; the axis of highest symmetry.
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4. Sn� These groups have improper rotation through
2�

n
:

Improper rotation�rotation followed by re�ection in the plane ? to axis of rotation
If n is odd these groups are identical to Cnh

5. Dn� These groups have n twofold axes ? to principal Cn axis

6. Dnd� In Dn there are additional diagonal re�ection planes �d; bisecting the angles between 2-fold axies ? to
principal axis.

7. Dnh� There are additional horizontal re�ection plane �h

8. T� Symmetry of tetrahedron. It has 12 proper rotations, 3 C2; around X; Y; Z axes and 8 C3 along body
diagonals.
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9. Td� This group contains re�ections in addition to those in T:

10. O� Octahedral group� proper rotations which take a cube or an octahedron into itself. This group has 8 C3
along body diagonals, 3 C2; around X; Y; Z axes, and 6 C4; around X; Y; Z axes

11. Oh = O � i This group includes improper rotations and re�ections
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1.2 Elementary rep of rotation group

One simple application of group theory is to study the e¤ect of crystal �elds on the atom if the �eld is weak enough.
For this we need to study the rotational properties of a free atom. We study the representation of full rotation group
in details in next chapter. Here we will just borrow some simple results for our purpose. As we learn from Quantum
Mechanics that irreps are labelled by orbital angular momentm l which takes integer values, l = 0; 1; 2; 3; � � � and we
can take spherical harmonics as the basis functions,

Y ml (�; �) � Pml (�) eim�; m = �l; � � � ; l

where Pml (�)
0
s are the associated Legendre functions. Under the rotation R we have,

PRY
m
l =

X
m

�(l) (R)m0m Y
m0

l

We need to know the characters of these representations in order to study how they split up under the crystal �elds.
We will use the property that rotations with same angle are all in the same class and choos the simple case of rotation
of angle � around z � axis: In this case we get

P�Y
m
l (�; �) = Y ml (�; �� �) = e�im�Y ml (�; �)

The character is then

�(l) (�) =
lX

m=�l
e�im� =

sin

�
l +

1

2

�
�

sin
�

2

We will use this formula to study the splitting of enegy levels.

1.3 Crytal-�eld splitting of atomic levels

If we describe the crytal �eld by a potential, then this potential should be invariant under the symmetry group of the
crystal. We will illustrate the splitting of atomic levels reduces by an example. The character table of octahedron
group is given below,

E 8C3 3C2 6C2 6C4
�1 A1 1 1 1 1 1
�2 A2 1 1 1 �1 �1
�3 E 2 �1 2 0 0
�4 T1 3 0 �1 �1 1
�5 T2 3 0 �1 1 �1

For the atomic levels we use the formula given above with the results,

�(l) (C2) = � (�) = (�)l

�(l) (C3) = �

�
2�

3

�
=

8<: 1 l = 0; 3; � � �
0 l = 1; 4; � � �
�1 l = 2; 5; � � �

�(l) (C4) = �
��
2

�
=

�
1 l = 0; 1; 4; 5 � � �
�1 l = 2; 3; 6; 7; � � �

With respect to O group we get
O E 8C3 3C2 6C2 6C4
D0 1 1 1 1 1
D1 3 0 �1 �1 1
D2 5 �1 1 1 �1
D3 7 1 �1 �1 �1

where we denote l = n representation by Dn: Using the formula for computing the coe¢ cients of reduction of
representation, we get

D0 = A1; D1 = T1; D2 = E + T2; D3 = A2 + T1 + T2

This gives the splitting of the atomic levels. For example, 5 l = 2 levels split into a doublet E; and a triplet T2:

5



Additional splitting in �eld of lower symmetry
In actual crystals there are some small departure from cubic symmetry O: Consider the example the the cubic

symmetry O is reduced to D3: We can study the further splitting again using character table

D3

O
:

D3 E 2C3 3C2
A1 1 1 1
A2 1 1 �1
E 2 �1 0

A1 1 1 1
A2 1 1 �1
E 2 �1 0
T1 3 0 �1
T2 3 0 1

From this we see that T1 �! E + A2; T2 �! E + A1: This means that triplet level T1 will split into a doublet E
and a singlet A2:
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